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Abstract

The long term goal of our research at the Intelligent
Robotic Laboratory at Vanderbilt University is to de-
velop advanced intelligent robotic aid systems for hu-
man services. As a first step toward our goal, the cur-
rent thrusts of our R&D are centered on the develop-
_ ment of an intelligent robotic aid called the ISAC (Intel-
" ligent Soft Arm Control). In this paper, we describe the
overall system architecture and current activities in in-
telligent control, adaptive/interactive control and task
learning.

I Introduction

The goal of our current research is to develop an intel-
ligent robotic aid system for the service sector such as
hospitals and home. The main benefit of such a system
is to provide the sick and physically challenged person
with means to function more independently at home or
work place. As a first step toward our goal, we have
developed a prototype robotic aid system called the
ISAC (Intelligent Soft Arm Control).! To insure ease
of use, safety, and flexibility of the system, we have in-
tegrated several sensors such as vision, voice, touch and
ultrasonic ranging. The user interacts with the system
in natural language like commands such as ‘feed me
soup.’ Other related R&D activities being conducted
include the development of an ISAC/HERO coopera-
tive aid system with a HERO 2000 mobile robot to
extend the system capabilities and work on a flexible
microactuator robotic hand. In this paper, the overall
system architecture is first presented. Next, the con-
struction and performance of a parallel controller is de-
scribed, followed by a discussion on various command
interpreters and reflex control. Very preliminary results
from recently constructed macro action builder and task
learning module follow to illustrate the ease of use. We
conclude with a discussion of the remammg technical
issues needed to be addressed.

II System Architecture

ISAC is a robotic aid system for feeding the physi-
cally handicapped. It uses a unique manipulator called
Soft Arm. The Soft Arm is a pneumatically-actuated
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manipulator. It is lightweight and suitable for oper-
ation in close proximity to humans. The actuators
are fiber-reinforced rubber tubes called rubberiuators,

“whose length depends on the pressure of the air inside

the tube. Two rubbertuators control a joint in much
the same way as human muscles.

~ The feeding task requires the recogmtlon and the lo-
cation of objects such as spoon, fork, and bow! on the
table so that the arm can manipulate them. These ob-
jects are recognized from an image taken by an overhead
camera. The recognition is independent of the size and
orientation of the objects, a requirement characteristic
of a normal feeding environment where utensils of dif-
ferent sizes are present at various orientations. ISAC
also uses stereo cameras to track the face of the user in
3-D. This allows the arm to reach the mouth of the user
even when he moves his head. Real-time face tracking
also allows the detection of a sudden motion of the user.
This could be caused by a sneeze or a muscle spasm. In
such a case, the arm uses reflex action to move away
from the path of the user.

Figure 1 illustrates the integrated hardware/software
configuration of the ISAC system.? As shown in the
figure, ISAC has a distributed architecture. The dis-
tributed architecture will allow us to easily add new
modules and, therefore, new functionality. 3 The break-
down of one module will not halt the system, but rather,
it will only result in a degradation of the activities that
the system as a whole could previously perform.

The nature of communication between the modules
must be such that each can exist without assuming the
existence of other modules. This is achieved with a
“blackboard,” which is a means of indirect communica-
tions between modules.* Whenever a module requires
a service to be performed by some other module, it
posts the request to the blackboard. The requests in
the blackboard are monitored by the modules, which
perform the ones they are capable of. A brief descrip-
tion of key modules in ISAC are given below.

Object Recognition The object recognition module
captures an image of the environment and identifies
the location of all recognizable objects. The recog-
nition algorithms used in this module is described
in Bishay et al.5 Recognition is mode! based, using
a normalized distance histogram to find the best
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Fig. 1. Integrated ISAC architecture.

match with histograms in a database of possible
target objects. An orientation histogram is used to
determine the orientation of the object. Example
objects in the environment are spoon, fork, knife,
cup, and bowl, The recognition algorithm is ro-
bust enough to recognize various types and sizes of
generic objects such as a spoon.

Face Tracking The face tracking module uses a pair
of cameras to determine the position of the face in
3-D. The forehead of the user is tracked by both
cameras. The disparity between the 2-D position
obtained from each camera provides the third di-
mension: the distance of the user from the camera.
Details of the tracking algorithm and camera cal-
ibration are described in Ernst et al.® In addition
to specifying the position of the user’s face for ac-
curate feeding, the face tracking module can also
detect any sudden motion made by the user. If the
direction of the motion is towards the arm, such
that a collision with the arm is possible, the arm is
moved away from the user in a reflex action.

Voice Recognition A voice recognition system re-
places the keyboard as the main user interface.
Currently we are using the IN? commercial voice
recognition system. It is running in parallel with
the planning process, allowing the user to intervene
‘the task execution if necessary.

Parallel Control The Soft Arm is controlled by a
transputer-based parallel controller. It uses a net-
work of transputers that can be reconfigured in case

of a fault in the controller. Details of this module
is given in Section III. We are developing a control
system which can learn the best control strategy
using a neural network and fuzzy logic. The neu-
ral network will be used to generate the knowledge
base which will be used by the fuzzy controller.

Macro Action Builder This module acts as a voice-
based “teach pendant” for the system designer or
user. It provides the user with the ability to teach
ISAC new actions and later retrieve them. It also
allows the user to use fuzzy and context depen-
dent commands such as move closer. This module
enhances the extensibility of the ISAC’s tasks as
described in Section V.

Task Learning This module, currently under develop-
ment, adds the capability of learning from obeying
user commands and observing their effects. While
the action building facility allows the system to
learn how to perform an action, this module learns
when and why to perform it, allowing the system
to learn how to plan. The learning mechanism is
described in Section V.

The ISAC system identifies some key requirements
of service robot systems. These form the objectives
of many research areas such as control, user interface,
planning, and learning.”® The following sections high-
light these important research issues and describe the
work being performed in greater detail.

ITI Intelligent Control

Parallel Controller

One of the key issues in the ISAC system is intelligent
control. Since the Soft Arm exhibits a highly nonlinear
joint dynamics due to rubbertuators®, a special con-
troller is needed to allow different control techniques
to be used. Currently a transputer-based parallel con-
troller is designed and implemented to control the Soft
Arm as shown in Figure 2. It consists of a network of
eight transputers. Each joint of the Soft Arm is con-
nected to one transputer as its joint controller. A mas-
ter transputer is then used to communicate with the
host computer and supervise the joint controllers. The
master node contains the robot command interpreter
and the kinematic model of the Soft Arm.!° It is also
connected to the fuzzy processor FP-3000 which acts as
a fuzzy coprocessor for control and path planning.
Currently, a PID controller is implemented in each
joint node. A cubic spline is generated as the trajec-
tory for the joint motion to follow., This reduces the
amount of energy stored while moving the joint, thus
allowing the speed to be increased without considerable
jerky motion due to the nonlinearities of the rubbertu-
ator joint.!! The controller can access all the motion
data and issue a new command at any time even when
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Fig. 2. The Transputer-based Parallel Controller.

the robot is still moving. This is very important to
implement the reflex action.

The nodes of the parallel controller are connected to-
gether via a programmable link switch. This feature al-
lows the controller to be reconfigured in case of a fault
detected in one of its nodes. A spare transputer can
replace the faulty one by reconfiguring the connections
of the network.

Fuzzy Control

Currently, a fuzzy tuning mechanism is used to tune the
parameters of each PID controller as shown in Figure 3.
This is useful with rubbertuators because of their non-
linear behavior. This mechanism uses three fuzzy ma-
trices to tune the proportional, integral, and differential
gains of the PID controller. Each matrix is similar to
the Macvicar-Whelan matrix described in Tzafestaset
al.12 The fuzzy supervisor continually updates the con-
troller parameters based on heuristic rules. The out-
put of the fuzzy supervisor is the amount of change in
each parameter of the PID controller. This allows the
designer to specify different conflicting performance in-
dices such as the trajectory following and disturbance
rejection which leads to improved performance of the
transient and steady state behavior of the closed loop
system. In this case, the fuzzy system handles joint
couplings as disturbances.

Combined with fuzzy logic, neural networks can also
be used to learn the human-like trajectory to be followed
by the robot. This technique uses neural networks to
generate the knowledge base used by the fuzzy system.'
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Fig. 3. Fuzzy Tuning for the Joint PID Controller.
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Fig. 4. The Flexible Microactuator.'

Flexible Gripper

Recently, research on the use of a flexible gripper has
started. The gripper is composed of four flexible mi-
croactuators which act as fingers (shown in Figure 4).
Each finger has three degrees of freedom — pitch, yaw
and stretch.!*

The flexible microactuator is made of fiber-enforced
rubber. Internally, it is divided into three cham-
bers whose individual pressures are controlled indepen-
dently. The tip of each microactuator can be positioned
depending on pressure differences inside its chambers.

These microactuators are very useful in applications
that require flexible grippers. The flexible microactua-
tor can also be very useful in zero gravity applications
since it will not be loaded with object weight. The use of
the flexible gripper will also increase the variety of tasks
ISAC can perform such as handling fragile objects.

Issues on position sensing and closed loop control of
the microactuator need to be investigated. Currently,
open loop control is used to drive the flexible microactu-
ator. To use closed loop control for the microactuator,
force sensitive resistors will be used for position and
force sensing. '

d-6G.

415



416

IV Interactive Control

The ISAC system’s chief purpose is to interact with its
user in a friendly and beneficial fashion. ISAC must pro-
vide a simple and consistent user interface with plenty
of feedback so that the user is not intimidated or mis-
understood. The system should be capable of handling
the terms people use in normal language and it should
understand when context applies to a command. At the
same time, the system must keep a vigil for potentially
dangerous situations and react to these without needing
user interaction.

Command Interface

If ISAC is to be useful as a tool for a physically chal-
lenged person, the system must have a simple and flex-
ible user interface. We elected to use voice commands
to drive the system. The user’s voice is captured by a
microphone and is processed by a voice recognition sys-
tem. Only a short training session is required to handle
any speaker,

After the words are recognized, the planning module
takes over and breaks down the user commands into ac-
tions for the system. Thus, the simple command ‘feed
me soup’ is broken down into picking up the spoon,
going to the bowl, dipping into the bowl, tracking the
user’s face, and positioning the spoonful of soup at the
user’s mouth. These commands are also broken down
into direct actions and coordinates for the Soft Arm.
The current system handles natural-language-like com-
mands by repeatedly breaking down the commands into
subcommands until primitive actions are reached.

Another important aspect of the ISAC user interface
is feedback. The ISAC system provides voice feedback
by means of digitized messages that are replayed under
certain conditions. These messages acknowledge user
commands and assure the user that the system is doing
what is expected, before things have gone too far. The
messages also transmit error conditions to the user. At
the moment ISAC detects a situation when it cannot
pick up a spoon, even though the user requested soup,
it will report an error to the user. Thus voice feedback
is used to make ISAC more natural to use and to report
error conditions in a straightforward manner.

Fuzzy Command Interpreter

A recent addition to the ISAC system is a fuzzy com-
mand interpreter. This module looks at user commands
that contain fuzzy linguistic terms and translates them
into crisp outputs for the rest of the ISAC system given
the current context as shown in Figure 5. This context-
based translation is a very powerful mechanism and al-
lows a series of commands to be replaced by one fuzzy
command (for example, ‘move ¢ lot closer’ would po-
sition the robot close to the user, and the subsequent
command ‘move closer’ would only move the robot a
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Fig. 5. Fuzzy Command Interpreter.

tiny bit because the arm is already “close” to the user).
Fuzzy inference is used to take these linguistic terms
and generate the crisp outputs which ISAC can use.
This mechanism adapts user commands based on cur-
rent system context information.

By having the ability to understand fuzzy linguis-
tic terms in commands, ISAC’s user interface is much
friendlier to potential users and is also more powerful
due to the fact that these commands include context as
well as “fuzziness.”

Reflex Action

One important characteristic of an intelligent robotic

system is the ability to detect a potentially dangerous-

condition and react to this condition without user inter-
vention. In particular, when a robot is in close proxim-
ity to people it is very important that the robot should
not injure the person even in “emergency” situations.
To this end ISAC is equipped with a reflex system like
the one described by Kara et al.! The key system com-
ponents related to reflex action are the stereo real-time
face tracking system, the sonar sensor, and the parallel
controller.

The reflex system monitors the user’s position relative
to the arm position and when the user makes a sgdden
motion toward the arm (as in a sneeze or convulsion), a
high speed signal is sent to the arm controller to imme-
diately move the robot out of the user’s way. This type
of intelligence is crucial in insuring that ISAC performs
well under user command as well as situations that the
user did not expect.

Stereo Face Tracking The ISAC system relies on
stereo face tracking® to get the user’s position. This
tracking system locks on to the user and can track the
user’s position at 10-12 frames/sec. By using stereo
cameras the face tracking system can track objects in
3 dimensional space and provides z (depth) values as
well as x,y position. This depth value is the one that
is crucial to the reflex action. The 3D face tracking
system is shown in Figure 6.
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Gripper Mounted Sonar Sensor In addition to
the stereo face tracking, the ISAC system uses a sonar
sensor mounted on the gripper to measure the relative
distance from the robot to the user. This sensor pro-
vides additional information about the relative position
and velocity of the user with respect to the arm. The
sampling rate of the sonar sensor is slightly faster than
the cameras in the face tracking system and thus pro-
vides better tracking information to control the reflex
action,

Parallel Controller and Fuzzy Supervisor
The reflex action depends on the ability of the arm to
move quickly out of the way. Ideally the servo system
for the arm could complete any motion that we desire,
but this is not the case. One type of control is useful
for making smooth steady motions during normal sys-
tem operation, but the control system response should
be entirely different during the reflex action, where re-
sponse speed is critical. Due to this need, our parallel
controller'® uses a fuzzy supervisor.!? to tune the con-
trol loops as described in Section III. During normal
operation, the fuzzy supervisor sets the controller gains
for steady smooth motions, with low overshoot and high
damping. When a motion command meets the require-
ments of reflex, the gains are set to minimize the rise
time only. Thus, the damping ratio and other indices
are ignored during the reflex motion. This results in

quick, but jerky motions.

Reflex The two sensor systems allow the reflex
system to keep constant watch over the possibility of
user injury and the fuzzy supervisor in the controller
tunes the arm for the best response in the emergency
situation. The combination of these systems leads to an
effective reflex action to protect the user from injury.

V  Task Learning

An aid system that comes preprogrammed with a fixed
repertoire of tasks will not be of help to users with unan-
ticipated needs. The advantage of using a general pur-
pose robot manipulator over the specific-purpose aid de-
vices cannot be fully realized unless the user can create
new tasks for the robot. Teleoperation has traditionally
been the way by which the user can move the arm to
perform the action desired by the user. However, users
find teleoperation very tiring and prefer to substitute

them with high level commands.!® To achieve this, the

system must be able to create high level actions out
of teleoperated commands and then use a sequence of
these actions to carry out tasks.

The knowledge to be learned can be divided into three
types: how to perform an action, when to perform it,
and what are its effects. To address the first type, we
have designed an action builder which allows the user to
create macro actions from primitive motion commands
and existing macro actions. This process is described
in the next subsection. For the system to plan it must
learn the two remaining knowledge types which repre-
sent the preconditions and effects of an action. These
can be learned when the user prompts the robot to per-
form an action. The conditions existing in the envi-
ronment just before the action was performed and the
conditions changed as a result of the action are used
to induce the preconditions and effects. The learning
algorithm is described later in this section.

Figure 7 shows the knowledge representation used for
planning. Actions and conditions are represented as
nodes and the relation between them as links. Learning
the relations between actions and conditions involves
formation of these links. Planning occurs through a
spreading activation process: “Potential” from the goal
conditions are spread backwards to the actions that
can achieve them. Similarly, potential from the cur-
rent state of the conditions is spread forward to ac-
tions. An action is performed when its potential rises
above a predefined threshold value. Details of the
task planning and learning mechanisms are described
in Bagchi et al.18

Action Builder

Traditionally, the user of ISAC was supposed to rely on
the knowledge precompiled by the system developer for
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the execution of a high level command such as ‘feed me
soup’.? The objective of the Action Builder module is
to enable the user to increase the system’s repertoire of

‘actions, by teaching new actions and integrating them

with those already provided to the user.

Any complex robotic action is made of a sequence of
several primitive actions. Primitive actions are those
that can be directly executed by the robot. In our case,
they fall under two categories:

o unconditional motions which instruct the Soft Arm
to get the tip of the gripper to a certain location
within its workspace, such as ‘move to location
xyz,” and

o conditional motions which are tied to the input
from any of the sensors mounted on the Soft Arm,
such as ‘move down until an input from the photo-
cell sensor is detected.’

The role of the system developer is then to provide the
user with an initial set of complex actions, and with a
library of primitive actions. The primitive actions in-
corporated into such a library enable the user to exploit
the Soft Arm, as well as any of the other modules that
ISAC comprises. The user then can tailor a complex ac-
tion by combining any number of primitive and/or com-
plex actions. A user-defined complex action could, in
turn, be at the basis for creating actions of higher com-
plexity. Hence, this module ensures the extensibility of
ISAC’s repertoire of actions in order to accommodate
the specific needs of its user.

User Interface The user interface provided by
the the Action Builder module is highly user-friendly.
From the user’s perspective, the Action Builder module
acts as a voice-activated “teach pendant.” It accepts the
user-defined complex actions, stores them, and retrieves
them whenever the user deems it necessary. Once re-
trieved, the user can modify or delete any of the previ-
ously stored complex actions or alternatively use them,

in conjunction with the primitive and complex actions
provided by the system developer, in order to build a
more complex action.

Learning from Observation

The learning task can be divided into two related parts:
learning the effects of an action and learning its pre-
conditions. For both, learning is supervised. The user
asks the robot to perform a set of actions. As the robot
performs them, it observes the change of conditions in
the environment and induces relations between condi-
tions and actions. The system can plan for a task once
the correct relations have been learned. It should be
noted here that the system does not learn the sequence
of actions that can achieve the goal. Instead, it learns
how to make the procedural actions “transparent,” by
associating preconditions and effects with each of them.

Learning the Effects of an Action  The effects of
an action can be easily identified if they can be de-
tected as soon as the action is complete. For robotic
tasks where objects have to be manipulated, this re-
quirement is true. The task of the learning system is
not only to detect the conditions that change after an
action is performed, but also to maintain a probability
for this change. The strength of the connection between
an action a; and a condition ¢, (see Figure 7) is given
by

P(c | a;) = num(c, a;)/num(a;)
if ¢; changes to true
—P(=ey | aj) = —num(-ey, a;)/num(a;)
if ¢ changes to false
(1)

where num(cg, a;) is the number of times ¢ is true after
action a; was performed and num(—cg, a;) is the num-
ber of times it is false. num(a;) is the number of times
the action was performed.

1t is possible for this approach to identify spurious
conditions as effects. Conditions can change at ran-
dom or as a result of other agents in the environment.
However, as the action is performed a number of times,
the strength of the link to a uncorrelated effect will de-
crease.

Wik =

Learning the Preconditions of an Action
Preconditions define the situations under which an ac-
tion will be successful in enabling all its effects. It is
difficult to discover the preconditions because one can-
not be sure that an action failed because of incorrect
preconditions or because of the unreliability of the en-
vironment. When the robot is asked by the user to
perform an action, the entire state of the environment
may be assumed to be the precondition. This, however,
is too specialized: the learning mechanism must gen-
eralize the precondition set over multiple instances of
successful operation of the action.




This generalization is performed by maintaining cor-
relation statistics between the state (true/false) of the
conditions and the successful execution of an action.
The correlation measure used is given by

wi; = Corr (c,-,aj) = P(aj | c;) - P(aj ] —|c,-),

(2)
where P(a; | c;) is the probability of action a; succeed-
ing given ¢; is true, and P(a; | —¢;) is the probability
of action a; succeeding given ¢; is false. These proba-
bilities are approximated from the statistics kept from
multiple executions of the action. For “hard” precon-
ditions, those that must be in the desired state for the
action to succeed, the correlation will be 1 (if the condi-
tion must be true) or —1 (if the condition must be false).
When the value is between these extremes, the precon-
dition is termed “soft,” denoting desirability but not
necessity. Finally, a value of 0 {or close to it) denotes
no correlation between the action and the condition.

Examples

Equipped with an initial set of primitive actions, the
user can create a complex action to pickup a fork by
using the following steps:

1. ‘locate objects’ to locate the objects on the table,
using the object recognition module.

2. ‘goto fork’ instructs the Soft Arm to move the tip
of the gripper on top of the fork’s location.

3. ‘move down’ until an input from the photocell sen-
sor is detected.

4. ‘close gripper’ to grasp the fork (now positioned
between the gripper’s fingers).

These steps are then stored as the ‘pickup fork’ complex
action.

Once, the system has been taught how to perform the
action ‘pickup fork’ it has to learn its preconditions and
effects. Consider the following state of the conditions
when the user asked the action to be executed for the
first time (the = symbol denotes false and its absence
denotes true):

located (spoon),
located (fork),
holding (nothing),
“in (soup, bowl),
in (plate, fries),

These states form the initial preconditions for the ac-
tion. After ‘pickup fork’is executed, the conditions that
changed are observed. For this example, the state of the
changed conditions are:

holding (fork),
“holding (nothing).

These form the initial effects.
At this stage, the preconditions are too specialized.
For example, located (spoon) should not affect the

outcome of the action in any way. The preconditions are
generalized from repeated observations. For example,
if located (spoon) is false when ‘pickup fork’is per-
formed for the second time, the correlation is changed
to zero. After a series of such observations, it is ex-
pected that all uncorrelated conditions will have low
link strengths and the preconditions will converge to:

located (fork),
holding(nothing).

The effects are also updated every time the action
is performed. This allows the maintenance of statistics
that allow the determination of the probability of an
effect occurring when the action is performed. This in-
formation is used by the planner when it has to choose
between multiple action sequences in order to achieve
its goals with the highest reliability.

V1 Conclusions and Future Directions

We have presented the design and implementation of an
intelligent robotic aid system for human services. The
prototype system, termed the ISAC (Intelligent Soft
Arm Control) has been shown to be an excellent testbed
for such a system which may be used in the service sec-
tor in the future. Figure 8 shows ISAC in its current
working environment. Remaining technical issues to be
addressed include the development of intelligent control
mechanisms for the flexible microactuator, integration
of the learning algorithm with the ISAC system and
the development of a robust real-time sensor fusion al-
gorithm for the ISAC/HERO system.
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